RandomApply in PyTorch
Buy Me a Coffee☕ *Memos: My post explains Compose(). My post explains RandomInvert(). My post explains CenterCrop(). My post explains Pad(). My post explains OxfordIIITPet(). RandomApply() can randomly apply zero or more transformations to an image with a given probability as shown below: *Memos: The 1st argument for initialization is transforms(Required-Type:tuple, list or torch.nn.Module of transformations). *The transformations are applied from the 1st index in order. The 2nd argument for initialization is p(Optional-Default:0.5-Type:int or float): *Memos: It's the probability of whether an image is posterized or not. It must be 0

*Memos:
- My post explains Compose().
- My post explains RandomInvert().
- My post explains CenterCrop().
- My post explains Pad().
- My post explains OxfordIIITPet().
RandomApply() can randomly apply zero or more transformations to an image with a given probability as shown below:
*Memos:
- The 1st argument for initialization is
transforms
(Required-Type:tuple
,list
or torch.nn.Module of transformations). *The transformations are applied from the 1st index in order. - The 2nd argument for initialization is
p
(Optional-Default:0.5
-Type:int
orfloat
): *Memos:- It's the probability of whether an image is posterized or not.
- It must be
0 <= x <= 1
.
- The 1st argument is
img
(Required-Type:PIL Image
ortensor
(int
)): *Memos:- A tensor must be 2D or 3D.
- Don't use
img=
.
-
v2
is recommended to use according to V1 or V2? Which one should I use?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomApply
from torchvision.transforms.v2 import RandomInvert
from torchvision.transforms.v2 import RandomVerticalFlip
from torchvision.transforms.v2 import CenterCrop
from torchvision.transforms.v2 import Pad
rp = RandomApply(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)])
rp = RandomApply(transforms=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0.5)
rp
# RandomApply(RandomInvert(p=1)
# RandomVerticalFlip(p=1)
# CenterCrop(size=(200, 200))
# Pad(padding=20, fill=0, padding_mode=constant))
rp.transforms
# [RandomInvert(p=1),
# RandomVerticalFlip(p=1),
# CenterCrop(size=(200, 200)),
# Pad(padding=20, fill=0, padding_mode=constant)]
rp.p
# 0.5
origin_data = OxfordIIITPet(
root="data",
transform=None
)
# `ri` is RandomInvert() and `rv` is RandomVerticalFlip().
# `cc` is CenterCrop() and `pad` is Pad().
ri_rv_cc_pad_p1_data = OxfordIIITPet(
root="data",
transform=RandomApply(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
CenterCrop(size=200),
Pad(padding=20)], p=1)
# transform=RandomApply(transforms=ModuleList(
# [RandomInvert(p=1),
# RandomVerticalFlip(p=1),
# CenterCrop(size=200),
# Pad(padding=20)]), p=1)
)
ri_rv_pad_cc_p1_data = OxfordIIITPet(
root="data",
transform=RandomApply(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
Pad(padding=20),
CenterCrop(size=200)], p=1)
)
ri_rv_cc_pad_p0_data = OxfordIIITPet(
root="data",
transform=RandomApply(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
CenterCrop(size=200),
Pad(padding=20)], p=0)
)
ri_rv_cc_pad_p05_data = OxfordIIITPet(
root="data",
transform=RandomApply(transforms=[RandomInvert(p=1),
RandomVerticalFlip(p=1),
CenterCrop(size=200),
Pad(padding=20)], p=0.5)
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=ri_rv_cc_pad_p1_data, main_title="ri_rv_cc_pad_p1_data")
show_images1(data=ri_rv_pad_cc_p1_data, main_title="ri_rv_pad_cc_p1_data")
print()
show_images1(data=ri_rv_cc_pad_p0_data, main_title="ri_rv_cc_pad_p0_data")
show_images1(data=ri_rv_cc_pad_p0_data, main_title="ri_rv_cc_pad_p0_data")
show_images1(data=ri_rv_cc_pad_p0_data, main_title="ri_rv_cc_pad_p0_data")
print()
show_images1(data=ri_rv_cc_pad_p05_data, main_title="ri_rv_cc_pad_p05_data")
show_images1(data=ri_rv_cc_pad_p05_data, main_title="ri_rv_cc_pad_p05_data")
show_images1(data=ri_rv_cc_pad_p05_data, main_title="ri_rv_cc_pad_p05_data")
print()
show_images1(data=ri_rv_cc_pad_p1_data, main_title="ri_rv_cc_pad_p1_data")
show_images1(data=ri_rv_cc_pad_p1_data, main_title="ri_rv_cc_pad_p1_data")
show_images1(data=ri_rv_cc_pad_p1_data, main_title="ri_rv_cc_pad_p1_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, t=None, p=0.5):
plt.figure(figsize=[10, 5])
plt.suptitle(t=main_title, y=0.8, fontsize=14)
if main_title != "origin_data":
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
rs = RandomApply(transforms=t, p=p)
plt.imshow(X=rs(im))
plt.xticks(ticks=[])
plt.yticks(ticks=[])
else:
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.xticks(ticks=[])
plt.yticks(ticks=[])
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="ri_rv_cc_pad_p1_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=1)
show_images2(data=origin_data, main_title="ri_rv_pad_cc_p1_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
Pad(padding=20), CenterCrop(size=200)], p=1)
print()
show_images2(data=origin_data, main_title="ri_rv_cc_pad_p0_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=0),
CenterCrop(size=200), Pad(padding=20)], p=0)
show_images2(data=origin_data, main_title="ri_rv_cc_pad_p0_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=0),
CenterCrop(size=200), Pad(padding=20)], p=0)
show_images2(data=origin_data, main_title="ri_rv_cc_pad_p0_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=0),
CenterCrop(size=200), Pad(padding=20)], p=0)
print()
show_images2(data=origin_data, main_title="ri_rv_cc_pad_p05_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0.5)
show_images2(data=origin_data, main_title="ri_rv_cc_pad_p05_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0.5)
show_images2(data=origin_data, main_title="ri_rv_cc_pad_p05_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=0.5)
print()
show_images2(data=origin_data, main_title="ri_rv_cc_pad_p1_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=1)
show_images2(data=origin_data, main_title="ri_rv_cc_pad_p1_data",
t=[RandomInvert(p=1), RandomVerticalFlip(p=1),
CenterCrop(size=200), Pad(padding=20)], p=1)