AugMix in PyTorch (2)

Buy Me a Coffee☕ *Memos: My post explains AugMix() about no arguments and full argument. My post explains AugMix() about severity argument (2). AugMix() can randomly do AugMix to an image as shown below. *It's about severity argument (1): from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import AugMix from torchvision.transforms.functional import InterpolationMode origin_data = OxfordIIITPet( root="data", transform=None ) s1_data = OxfordIIITPet( # `s` is severity. root="data", transform=AugMix(severity=1) ) s2_data = OxfordIIITPet( root="data", transform=AugMix(severity=2) ) s3_data = OxfordIIITPet( root="data", transform=AugMix(severity=3) ) s4_data = OxfordIIITPet( root="data", transform=AugMix(severity=4) ) s5_data = OxfordIIITPet( root="data", transform=AugMix(severity=5) ) s6_data = OxfordIIITPet( root="data", transform=AugMix(severity=6) ) s7_data = OxfordIIITPet( root="data", transform=AugMix(severity=7) ) s8_data = OxfordIIITPet( root="data", transform=AugMix(severity=8) ) s9_data = OxfordIIITPet( root="data", transform=AugMix(severity=9) ) s10_data = OxfordIIITPet( root="data", transform=AugMix(severity=10) ) s1mw50_data = OxfordIIITPet( # `mw` is mixture_width. root="data", transform=AugMix(severity=1, mixture_width=50) ) s2mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=2, mixture_width=50) ) s3mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=3, mixture_width=50) ) s4mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=4, mixture_width=50) ) s5mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=5, mixture_width=50) ) s6mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=6, mixture_width=50) ) s7mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=7, mixture_width=50) ) s8mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=8, mixture_width=50) ) s9mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=9, mixture_width=50) ) s10mw50_data = OxfordIIITPet( root="data", transform=AugMix(severity=10, mixture_width=50) ) s1cd50_data = OxfordIIITPet( # `cd` is chain_depth. root="data", transform=AugMix(severity=1, chain_depth=50) ) s2cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=2, chain_depth=50) ) s3cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=3, chain_depth=50) ) s4cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=4, chain_depth=50) ) s5cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=5, chain_depth=50) ) s6cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=6, chain_depth=50) ) s7cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=7, chain_depth=50) ) s8cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=8, chain_depth=50) ) s9cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=9, chain_depth=50) ) s10cd50_data = OxfordIIITPet( root="data", transform=AugMix(severity=10, chain_depth=50) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=s1_data, main_title="s1_data") show_images1(data=s2_data, main_title="s2_data") show_images1(data=s3_data, main_title="s3_data") show_images1(data=s4_data, main_title="s4_data") show_images1(data=s5_data, main_title="s5_data") show_images1(data=s6_data, main_title="s6_data") show_images1(data=s7_data, main_title="s7_data") show_images1(data=s8_data, main_title="s8_data") show_images1(data=s9_data, main_title="s9_data") show_images1(data=s10_data, main_title="s10_data") print() show_images1(data=s1mw50_data, main_title="s1mw50_data") show_images1(data=s2mw50_data, main_title="s2mw50_data") show_images1(data=s3mw50_data, main_title="s3mw50_data") show_images1(data=s4mw50_data, main_title="s4mw50_data") show_images1(data=s5mw50_data, main_title="s5mw50_data") show_images1(data=s6mw50_data, main_title="s6mw50_data") show_images1(data=s7mw50_data, main_title="s7mw50_data") show_images1(data=s8mw50_data, main_title="s8mw50_data") show_images1(data=s9mw50_data, main_title="s9mw50_data") show_images1(data=s10mw50_data, main_title="s10mw50_data") print() show_images1(data=s1cd50_data, main_title="s1cd50_data") show_images1(data=s2cd50_data, main_title="s2cd50_data") show_images1(data=s3cd50_data, main_title="s3cd50_data") show_images1(data=s4cd5

Mar 16, 2025 - 08:12
 0
AugMix in PyTorch (2)

Buy Me a Coffee

*Memos:

AugMix() can randomly do AugMix to an image as shown below. *It's about severity argument (1):

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import AugMix
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1_data = OxfordIIITPet( # `s` is severity.
    root="data",
    transform=AugMix(severity=1)
)

s2_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=2)
)

s3_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=3)
)

s4_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=4)
)

s5_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=5)
)

s6_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=6)
)

s7_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=7)
)

s8_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=8)
)

s9_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=9)
)

s10_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10)
)

s1mw50_data = OxfordIIITPet( # `mw` is mixture_width.
    root="data",
    transform=AugMix(severity=1, mixture_width=50)
)

s2mw50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=2, mixture_width=50)
)

s3mw50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=3, mixture_width=50)
)

s4mw50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=4, mixture_width=50)
)

s5mw50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=5, mixture_width=50)
)

s6mw50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=6, mixture_width=50)
)

s7mw50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=7, mixture_width=50)
)

s8mw50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=8, mixture_width=50)
)

s9mw50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=9, mixture_width=50)
)

s10mw50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, mixture_width=50)
)

s1cd50_data = OxfordIIITPet( # `cd` is chain_depth.
    root="data",
    transform=AugMix(severity=1, chain_depth=50)
)

s2cd50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=2, chain_depth=50)
)

s3cd50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=3, chain_depth=50)
)

s4cd50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=4, chain_depth=50)
)

s5cd50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=5, chain_depth=50)
)

s6cd50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=6, chain_depth=50)
)

s7cd50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=7, chain_depth=50)
)

s8cd50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=8, chain_depth=50)
)

s9cd50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=9, chain_depth=50)
)

s10cd50_data = OxfordIIITPet(
    root="data",
    transform=AugMix(severity=10, chain_depth=50)
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
        plt.xticks(ticks=[])
        plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1_data, main_title="s1_data")
show_images1(data=s2_data, main_title="s2_data")
show_images1(data=s3_data, main_title="s3_data")
show_images1(data=s4_data, main_title="s4_data")
show_images1(data=s5_data, main_title="s5_data")
show_images1(data=s6_data, main_title="s6_data")
show_images1(data=s7_data, main_title="s7_data")
show_images1(data=s8_data, main_title="s8_data")
show_images1(data=s9_data, main_title="s9_data")
show_images1(data=s10_data, main_title="s10_data")
print()
show_images1(data=s1mw50_data, main_title="s1mw50_data")
show_images1(data=s2mw50_data, main_title="s2mw50_data")
show_images1(data=s3mw50_data, main_title="s3mw50_data")
show_images1(data=s4mw50_data, main_title="s4mw50_data")
show_images1(data=s5mw50_data, main_title="s5mw50_data")
show_images1(data=s6mw50_data, main_title="s6mw50_data")
show_images1(data=s7mw50_data, main_title="s7mw50_data")
show_images1(data=s8mw50_data, main_title="s8mw50_data")
show_images1(data=s9mw50_data, main_title="s9mw50_data")
show_images1(data=s10mw50_data, main_title="s10mw50_data")
print()
show_images1(data=s1cd50_data, main_title="s1cd50_data")
show_images1(data=s2cd50_data, main_title="s2cd50_data")
show_images1(data=s3cd50_data, main_title="s3cd50_data")
show_images1(data=s4cd50_data, main_title="s4cd50_data")
show_images1(data=s5cd50_data, main_title="s5cd50_data")
show_images1(data=s6cd50_data, main_title="s6cd50_data")
show_images1(data=s7cd50_data, main_title="s7cd50_data")
show_images1(data=s8cd50_data, main_title="s8cd50_data")
show_images1(data=s9cd50_data, main_title="s9cd50_data")
show_images1(data=s10cd50_data, main_title="s10cd50_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=3, mw=3, cd=-1, a=1.0,
                 ao=True, ip=InterpolationMode.BILINEAR, f=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    if main_title != "origin_data":
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            am = AugMix(severity=s, mixture_width=mw, chain_depth=cd,
                        alpha=a, all_ops=ao, interpolation=ip, fill=f)
            plt.imshow(X=am(im))
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    else:
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
            plt.xticks(ticks=[])
            plt.yticks(ticks=[])
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1_data", s=1)
show_images2(data=origin_data, main_title="s2_data", s=2)
show_images2(data=origin_data, main_title="s3_data", s=3)
show_images2(data=origin_data, main_title="s4_data", s=4)
show_images2(data=origin_data, main_title="s5_data", s=5)
show_images2(data=origin_data, main_title="s6_data", s=6)
show_images2(data=origin_data, main_title="s7_data", s=7)
show_images2(data=origin_data, main_title="s8_data", s=8)
show_images2(data=origin_data, main_title="s9_data", s=9)
show_images2(data=origin_data, main_title="s10_data", s=10)
print()
show_images2(data=origin_data, main_title="s1mw50_data", s=1, mw=50)
show_images2(data=origin_data, main_title="s2mw50_data", s=2, mw=50)
show_images2(data=origin_data, main_title="s3mw50_data", s=3, mw=50)
show_images2(data=origin_data, main_title="s4mw50_data", s=4, mw=50)
show_images2(data=origin_data, main_title="s5mw50_data", s=5, mw=50)
show_images2(data=origin_data, main_title="s6mw50_data", s=6, mw=50)
show_images2(data=origin_data, main_title="s7mw50_data", s=7, mw=50)
show_images2(data=origin_data, main_title="s8mw50_data", s=8, mw=50)
show_images2(data=origin_data, main_title="s9mw50_data", s=9, mw=50)
show_images2(data=origin_data, main_title="s10mw50_data", s=10, mw=50)
print()
show_images2(data=origin_data, main_title="s1cd50_data", s=1, cd=50)
show_images2(data=origin_data, main_title="s2cd50_data", s=2, cd=50)
show_images2(data=origin_data, main_title="s3cd50_data", s=3, cd=50)
show_images2(data=origin_data, main_title="s4cd50_data", s=4, cd=50)
show_images2(data=origin_data, main_title="s5cd50_data", s=5, cd=50)
show_images2(data=origin_data, main_title="s6cd50_data", s=6, cd=50)
show_images2(data=origin_data, main_title="s7cd50_data", s=7, cd=50)
show_images2(data=origin_data, main_title="s8cd50_data", s=8, cd=50)
show_images2(data=origin_data, main_title="s9cd50_data", s=9, cd=50)
show_images2(data=origin_data, main_title="s10cd50_data", s=10, cd=50)

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description