RandomResizedCrop in PyTorch (2)

Buy Me a Coffee☕ *Memos: My post explains RandomResizedCrop() about size argument. My post explains RandomResizedCrop() about ratio argument. My post explains OxfordIIITPet(). RandomResizedCrop() can crop a random part of an image, then resize it to a given size as shown below: from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import RandomResizedCrop from torchvision.transforms.functional import InterpolationMode origin_data = OxfordIIITPet( root="data", transform=None ) s1000sc0_0origin_data = OxfordIIITPet( # `s` is size and `sc` is scale. root="data", transform=RandomResizedCrop(size=1000, scale=[0, 0]) ) s1000sc0_1_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0, 1]) ) s1000sc0_05_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0, 1]) ) s1000sc05_1_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0, 1]) ) s1000sc0001_0001_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.001, 0.001]) ) s1000sc001_001_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.01, 0.01]) ) s1000sc01_01_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.1, 0.1]) ) s1000sc02_02_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.2, 0.2]) ) s1000sc03_03_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.3, 0.3]) ) s1000sc04_04_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.4, 0.4]) ) s1000sc05_05_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.5, 0.5]) ) s1000sc06_06_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.6, 0.6]) ) s1000sc07_07_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.7, 0.7]) ) s1000sc08_08_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.8, 0.8]) ) s1000sc09_09_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[0.9, 0.9]) ) s1000sc1_1origin_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[1, 1]) ) s1000sc10_10origin_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[10, 10]) ) s1000sc100_100origin_data = OxfordIIITPet( root="data", transform=RandomResizedCrop(size=1000, scale=[100, 100]) ) import matplotlib.pyplot as plt def show_images1(data, main_title=None): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.tight_layout() plt.show() show_images1(data=origin_data, main_title="origin_data") print() show_images1(data=s1000sc0_0origin_data, main_title="s1000sc0_0origin_data") show_images1(data=s1000sc0_1_data, main_title="s1000sc0_1_data") show_images1(data=s1000sc0_05_data, main_title="s1000sc0_05_data") show_images1(data=s1000sc05_1_data, main_title="s1000sc05_1_data") print() show_images1(data=s1000sc0_0origin_data, main_title="s1000sc0_0origin_data") show_images1(data=s1000sc0001_0001_data, main_title="s1000sc0001_0001_data") show_images1(data=s1000sc001_001_data, main_title="s1000sc001_001_data") show_images1(data=s1000sc01_01_data, main_title="s1000sc01_01_data") show_images1(data=s1000sc02_02_data, main_title="s1000sc02_02_data") show_images1(data=s1000sc03_03_data, main_title="s1000sc03_03_data") show_images1(data=s1000sc04_04_data, main_title="s1000sc04_04_data") show_images1(data=s1000sc05_05_data, main_title="s1000sc05_05_data") show_images1(data=s1000sc06_06_data, main_title="s1000sc06_06_data") show_images1(data=s1000sc07_07_data, main_title="s1000sc07_07_data") show_images1(data=s1000sc08_08_data, main_title="s1000sc08_08_data") show_images1(data=s1000sc09_09_data, main_title="s1000sc09_09_data") show_images1(data=s1000sc1_1origin_data, main_title="s1000sc1_1origin_data") show_images1(data=s1000sc10_10origin_data, main_title="s1000sc10_10origin_data") show_images1(data=s1000sc100_100origin_data, main_title="s1000sc100_100origin_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(data, main_title=None, s=None, sc=(0.08, 1.0), r=(0.75, 1.3333333333333333), ip=InterpolationMode.BILINEAR, a=True): plt.figure(figsize=[10, 5]) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) if s: rrc = RandomResizedCrop(size=s, scale=sc, # Here ratio=r, interpolation=ip, antialia

Feb 13, 2025 - 03:56
 0
RandomResizedCrop in PyTorch (2)

Buy Me a Coffee

*Memos:

RandomResizedCrop() can crop a random part of an image, then resize it to a given size as shown below:

from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import RandomResizedCrop
from torchvision.transforms.functional import InterpolationMode

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

s1000sc0_0origin_data = OxfordIIITPet( # `s` is size and `sc` is scale.
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 0])
)

s1000sc0_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 1])
)

s1000sc0_05_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 1])
)

s1000sc05_1_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0, 1])
)

s1000sc0001_0001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.001, 0.001])
)

s1000sc001_001_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.01, 0.01])
)

s1000sc01_01_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.1, 0.1])
)

s1000sc02_02_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.2, 0.2])
)

s1000sc03_03_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.3, 0.3])
)

s1000sc04_04_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.4, 0.4])
)

s1000sc05_05_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.5, 0.5])
)

s1000sc06_06_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.6, 0.6])
)

s1000sc07_07_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.7, 0.7])
)

s1000sc08_08_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.8, 0.8])
)

s1000sc09_09_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[0.9, 0.9])
)

s1000sc1_1origin_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[1, 1])
)

s1000sc10_10origin_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[10, 10])
)

s1000sc100_100origin_data = OxfordIIITPet(
    root="data",
    transform=RandomResizedCrop(size=1000, scale=[100, 100])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
print()
show_images1(data=s1000sc0_0origin_data, main_title="s1000sc0_0origin_data")
show_images1(data=s1000sc0_1_data, main_title="s1000sc0_1_data")
show_images1(data=s1000sc0_05_data, main_title="s1000sc0_05_data")
show_images1(data=s1000sc05_1_data, main_title="s1000sc05_1_data")
print()
show_images1(data=s1000sc0_0origin_data, main_title="s1000sc0_0origin_data")
show_images1(data=s1000sc0001_0001_data, main_title="s1000sc0001_0001_data")
show_images1(data=s1000sc001_001_data, main_title="s1000sc001_001_data")
show_images1(data=s1000sc01_01_data, main_title="s1000sc01_01_data")
show_images1(data=s1000sc02_02_data, main_title="s1000sc02_02_data")
show_images1(data=s1000sc03_03_data, main_title="s1000sc03_03_data")
show_images1(data=s1000sc04_04_data, main_title="s1000sc04_04_data")
show_images1(data=s1000sc05_05_data, main_title="s1000sc05_05_data")
show_images1(data=s1000sc06_06_data, main_title="s1000sc06_06_data")
show_images1(data=s1000sc07_07_data, main_title="s1000sc07_07_data")
show_images1(data=s1000sc08_08_data, main_title="s1000sc08_08_data")
show_images1(data=s1000sc09_09_data, main_title="s1000sc09_09_data")
show_images1(data=s1000sc1_1origin_data, main_title="s1000sc1_1origin_data")
show_images1(data=s1000sc10_10origin_data,
             main_title="s1000sc10_10origin_data")
show_images1(data=s1000sc100_100origin_data,
             main_title="s1000sc100_100origin_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
def show_images2(data, main_title=None, s=None, sc=(0.08, 1.0),
                 r=(0.75, 1.3333333333333333),
                 ip=InterpolationMode.BILINEAR, a=True):
    plt.figure(figsize=[10, 5])
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        if s:
            rrc = RandomResizedCrop(size=s, scale=sc, # Here
                                    ratio=r, interpolation=ip,
                                    antialias=a)
            plt.imshow(X=rrc(im)) # Here
        else:
            plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
print()
show_images2(data=origin_data, main_title="s1000sc0_0origin_data", s=1000,
             sc=[0, 0])
show_images2(data=origin_data, main_title="s1000sc0_1_data", s=1000, sc=[0, 1])
show_images2(data=origin_data, main_title="s1000sc0_05_data", s=1000,
             sc=[0, 0.5])
show_images2(data=origin_data, main_title="s1000sc05_1_data", s=1000,
             sc=[0.5, 1])
print()
show_images2(data=origin_data, main_title="s1000sc0_0origin_data", s=1000,
             sc=[0, 0])
show_images2(data=origin_data, main_title="s1000sc0001_0001_data", s=1000,
             sc=[0.001, 0.001])
show_images2(data=origin_data, main_title="s1000sc001_001_data", s=1000,
             sc=[0.01, 0.01])
show_images2(data=origin_data, main_title="s1000sc01_01_data", s=1000,
             sc=[0.1, 0.1])
show_images2(data=origin_data, main_title="s1000sc02_02_data", s=1000,
             sc=[0.2, 0.2])
show_images2(data=origin_data, main_title="s1000sc03_03_data", s=1000,
             sc=[0.3, 0.3])
show_images2(data=origin_data, main_title="s1000sc04_04_data", s=1000,
             sc=[0.4, 0.4])
show_images2(data=origin_data, main_title="s1000sc05_05_data", s=1000,
             sc=[0.5, 0.5])
show_images2(data=origin_data, main_title="s1000sc06_06_data", s=1000,
             sc=[0.6, 0.6])
show_images2(data=origin_data, main_title="s1000sc07_07_data", s=1000,
             sc=[0.7, 0.7])
show_images2(data=origin_data, main_title="s1000sc08_08_data", s=1000,
             sc=[0.8, 0.8])
show_images2(data=origin_data, main_title="s1000sc09_09_data", s=1000,
             sc=[0.9, 0.9])
show_images2(data=origin_data, main_title="s1000sc1_1origin_data", s=1000,
             sc=[1, 1])
show_images2(data=origin_data, main_title="s1000sc10_10origin_data", s=1000, 
             sc=[10, 10])
show_images2(data=origin_data, main_title="s1000sc100_100origin_data", s=1000, 
             sc=[100, 100])

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description

Image description