Essential Review Papers on Physics-Informed Neural Networks: A Curated Guide for Practitioners

Skip the noise and focus on what really matters in PINN development The post Essential Review Papers on Physics-Informed Neural Networks: A Curated Guide for Practitioners appeared first on Towards Data Science.

Mar 14, 2025 - 06:59
 0
Essential Review Papers on Physics-Informed Neural Networks: A Curated Guide for Practitioners

Staying on top of a fast-growing research field is never easy.

I face this challenge firsthand as a practitioner in Physics-Informed Neural Networks (PINNs). New papers, be they algorithmic advancements or cutting-edge applications, are published at an accelerating pace by both academia and industry. While it is exciting to see this rapid development, it inevitably raises a pressing question:

How can one stay informed without spending countless hours sifting through papers?

This is where I have found review papers to be exceptionally valuable. Good review papers are effective tools that distill essential insights and highlight important trends. They are big-time savers guiding us through the flood of information.

In this blog post, I would like to share with you my personal, curated list of must-read review papers on PINNs, that are especially influential for my own understanding and use of PINNs. Those papers cover key aspects of PINNs, including algorithmic developments, implementation best practices, and real-world applications.

In addition to what’s available in existing literature, I’ve included one of my own review papers, which provides a comprehensive analysis of common functional usage patterns of PINNs — a practical perspective often missing from academic reviews. This analysis is based on my review of around 200 arXiv papers on PINNs across various engineering domains in the past 3 years and can serve as an essential guide for practitioners looking to deploy these techniques to tackle real-world challenges.

For each review paper, I will explain why it deserves your attention by explaining its unique perspective and indicating practical takeaways that you can benefit from immediately.

Whether you’re just getting started with PINNs, using them to tackle real-world problems, or exploring new research directions, I hope this collection makes navigating the busy field of PINN research easier for you.

Let’s cut through the complexity together and focus on what truly matters.

1⃣ Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and what’s next

                        </div>
                                            <div class= Read More